Результаты измерения поверхностного натяжения воды при разных температурах приведены в табл. 12. У других жидкостей поверхностное натяжение при повышении температуры также уменьшается. Следовательно, силы сцепления в жидкости уменьшаются при повышении температуры. К этому явлению вернемся, когда будем говорить об испарении жидкостей.
Таблица 12. Зависимость поверхностного натяжения воды от температуры
§ 253. Смачивание и несмачивание. В § 249 отмечалось, что небольшие капельки ртути, помещенные на стеклянную пластинку, принимают шарообразную форму. Это является результатом действия молекулярных сил, стремящихся уменьшить поверхность жидкости.
Ртуть, помещенная на поверхности твердого тела, не всегда образует круглые капли. Очистим цинковую пластинку от окислов, протерев ее тряпкой, смоченной в слабой серной кислоте, и поместим на нее капельку ртути (рис. 411). Мы увидим, что капелька ртути растечется по цинковой пластинке, причем общая поверхность капельки, несомненно, увеличится.
Капля анилина в опыте, изображенном на рис. 403, имеет шарообразную форму тоже только тогда, когда она не касается стенки стеклянного сосуда. Стоит ей коснуться стенки, как она тотчас прилипает к стеклу, растягиваясь по нему и приобретая большую общую поверхность.
Чем же объясняется эта разница? Вспомним, что стремление молекул жидкости уйти внутрь жидкости и уменьшить поверхность, отделяющую жидкость от газа, объясняется тем, что молекулы жидкости почти не притягиваются молекулами газа (молекул газа слишком мало).
Рис. 411. Растекание ртути по очищенному цинку
469 далее 


Используются технологии uCoz